

Sustainable Competence in Advancing Healthcare

SRI FOR MEDICAL IMAGING EQUIPMENT and GPP

16 August 2011 Erlangen

COCIR

AGENDA

	Time	Agenda Point
1.	11.00	Welcome and Introduction
2.	11.15	The GPP project and the preliminary report
3.	12.00	Lunch
4.	13.15	COCIR ongoing and past activities related to the GPP project
5.	13.45	Tour at Siemens manufacturing facility
6.	14.30	Discussion
7.	16.30	End of the meeting

MARKET of MEDICAL IMAGING EQUIPMENT

Modality		2009 Market Value	2010 Market Value	Estimated EU Market Coverage		
Computer Tomography (CT)		581 M€	566 M€	98 %		
Magnetic Resonance Imaging (MRI)		708 M€	777 M€	96%		
Nuclear I (SPECT, I	Medicine PET)	244 M€	240 M€	98%		
Ultrasound		801 M€	814 M€	82 %		
N	Cardio (45%)	377 M€	380 M€	92 %		
X-ray	Others (55%)	204 M€	186 M€	65 %		

THE FLEET APPROACH

- The SRI for Medical Imaging Equipment is based on the so called "fleet approach" not on the traditional approach used so far by Implementing Measures under the Ecodesign Directive.
- The fleet approach has been deeply discussed and explored during the preparation of the draft proposal of the EuP Directive, approved in 2005.
- Targets are set at the level of the whole Medical Industry (participating in the Initiative) and calculated as the average performance of the products placed on the market by participating companies.
- The methodology also provides for specific company targets that need to be reached by each company to ensure that the industry target is achieved.

THE FLEET APPROACH

SITUATION TODAY

TARGET SETTING

To determine the target, 3 different scenarios are defined according to different assumptions based on expert judgement.

- **Business as usual scenario (BAU):** the basic assumption is that given the situation today, during the innovation cycle all the competitors will invest in research to match the best performing players on the market. This assumption is very strong, especially in a sector where environmental performances are not the main driver for purchase choices of hospitals, public authorities or healthcare institutions. Nonetheless such assumption will ensure that ambitious targets will be set.
- Best not yet available technology scenario (BnyAT): each company provides a reasoned reduction value, based on the "best not yet available technology" (technology not yet available but still in the research and development phase) that could be achieved during the innovation cycle. The scenario is based on the assumption that all the companies could reach a reduction equal to the provided reduction values.
- **Beyond as usual scenario (Beyond BAU):** This scenario is based on the assumption that in the innovation cycle all the players will improve their products according to the average reduction of the BnyAT, except the best performing company that will improve the performance according to its own prediction, as improvements for the top runner are more difficult to obtain. The average value obtained from this scenario is chosen as the target for the next innovation cycle.

COCIR

ULTRASOUND EQUIPMENT PILOT PROJECT

ULTRASOUND PILOT PROJECT

- The Ultrasound pilot project was launched in 2009 as a pilot to gather experience for developing the SRI methodology.
- Ultrasound equipment was chosen because of the relative simplicity, the companies in the SRI producing it (7 out of 11) and the already well established ecodesign practices. The lessons learnt from the US pilot helped to develop the SRIv2.
- The Steering Committee decided not to apply the new methodology SRIv2 to Ultrasound, not to loose the achievements obtained in 2010, but to start in 2010 with MRI.
- The ultrasound pilot project committed participating companies to achieve by 2012 a reduction of 25% in energy consumption of sold products compared to 2005 baseline (14,5% compared with 2009 level).
- The new methodology will be applied to ultrasound starting from 2014/2015.

ULTRASOUND PILOT PROJECT

COCIR

Year	Total annual sales	Total annual sales as a % of 2005 annual sales	Total annual energy consumption of all new products sold	Total annual energy consumption of all new products as a % of 2005 annual energy consumption	Actual average annual energy consumption of all new products sold in kWh (per unit and year)	Actual average annual energy consumption of all new products compared to 2005	Predicted average annual energy consumption of all new products sold	Predicted annual energy consumption of all new products compared to 2005
	Units		kWh		kWh/unit year		kWh/unit year	
2005	17099	100%	15.757.081	100,00%	922	100,00%	-	
2006	20260	118%	17.536.665	111,29%	866	93,93%	-	
2007	21526	126%	17.193.377	109,12%	799	86,67%	-	
2008	22316	130%	16.606.597	105,39%	744	80,75%	-	
2009	17295	101%	13.977.060	88,70%	808	87,70%		
2010	19030	111%	13.858.605	87,95%	728	79,03%	769	83,5%
2011							730	79,2%
2012							691	75,0%

ULTRASOUND PILOT PROJECT

Energy load (kW)

ANNUAL ENERGY **CONSUMPTION**

US annual energy consumption (kWh)

Energy Load (kW) 0,3 0,25 0,2 Standby 0,15 ▲ Off . . • . . 0,1 0,05 . n 👖 ۸ **1** . 0 0 10 15 20 25 30 35 40 45 5 50

STANDARD ErP/GPP APPROACH

ONE MODALITY PER YEAR

- The SRI for Medical Imaging Equipment applies to the following modalities:
 - Magnetic Resonance
 - Computer Tomography
 - X-ray
 - Nuclear Medicine
 - Ultrasound
- Listed modalities are completely different technologies, used for different applications.
- Under the MEEUP they could not be considered as a single product group but have to be considered as separate and independent product groups, each one subject to its own "preparatory" study.
- For each modality expert groups need to develop common definitions for system boundaries, functional units, categorizations, use scenarios and most important a test procedure to measure the energy consumption. The process is harmonized for all modalities, except the test standard that have to be customized for each modality.
- For this reason Participating Companies commits to apply the methodology to one new modality per year.

	2011	2012	2013	2014	2015
MRI	\checkmark				
СТ		\checkmark			
X-Ray			\checkmark		
Nuclear Medicine				\checkmark	
Ultrasound					\checkmark

- Even before the official endorsement by the EC, participating companies started to apply the methodology to Medical Imaging Equipment
- In 2010 the SRI Steering Committee applied Step 1 and 2 of the Methodology to all the modalities in scope.
 - LCA data gathering
 - Prioritizations of modalities according to their environmental impact.
- Magnetic resonance equipment resulted as the modality with the highest environmental impact.
- Computer tomography has been selected as second modality to undergo the methodology.
- In November 2010 a group of MRI experts started to work to apply Step 3 and Step 4 to MRI:
 - Step 3: identification and prioritization of the most significant environmental aspects.
 - Step 4: definition of MRI equipment, use scenario, energy consumption standard test procedure, target setting.

MEASUREMENT OF ENERGY CONSUMPTION

- To define a procedure to measure the energy consumption of equipment which allows comparability and repeatability of results the following elements needs to be defined:
- Systems boundaries
- Definitions (i.e. operating modes)
- Product categories
- Use scenario (typical examination)
- Ranges for parameters and configurations
- Procedure workflow

MAGNETIC RESONANCE IMAGING

- Step 4 of the methodology has already defined:
- System boundaries
 - In Scope: All system-critical items needed to perform a basic scan, e.g. gradient amplifiers, RF unit, reconstruction engine(s), required electronics such power supplies, controllers, console/computer, cryogen compressor, water heat exchanger (facility cooled water is provided), patient table, magnet, heliumconservation equipment.
 - Out of scope: Any equipment and accessories beyond basic product offering and not required for a basic scan, or customerprovided equipment, e.g. surface coils, patient vital signs accessories, facility-provided cooling water equipment and hardware for advanced medical applications.

- Product Categorization
 - Member companies have recognized that MRI equipment has different design intents, for specific clinical applications.

General information on categories included	 matrix columns represent key differentiation characteristics that contribute to the energy consumption of a system each characteristic results in a designated amount of points total score of all characteristics will determine the overall category that a system belongs to 									
Key	Field data with	1.5T	50	points						
characteristics	Field strength	3.0 T	100	points						
		< 60 cm	10	points						
	bore size	60 - 70 cm	20	points						
		>70 cm	30	points						
		< 35 mT/m	40	points						
	Maximum Gradient Amplitude per axis	≥35 mT/m - ≤60 mT/m	60	points						
		> 60 mT/m	80	points						
		< 100 mT/m/s	20	points						
	Maximum Slewrate per axis	100 mT/m/s - 150 mT/m/s	30	points						
		> 150 mT/m/s	40	points						
		fixedtable	10	points						
	patienttable	mobile table	20	points						
		> 16 channels	15	points						
	maximumchannels	16-64 channels	35	points						
		>64 channels	45	points						
		<40	25	points						
	Useable FOV cm ²	40 - 50 cm	35	points						
		> E0.om	45	nointe						

MAGNETIC RESONANCE IMAGING

• Use scenario

Mode	Description	Typical time in mode per day (hours)	Estimate of % Energy over Life
Off mode	Lowest power state; requires interaction to make system ready; system circuit breakers on.	12	45
Standby mode	System on, ready to scan, gradient system quiescent.	7 (varies)*	30
Scanning mode	System is activating gradient system and capturing image data.	5 (varies)*	25

Diagnostic Application	IMV © Market Distribution	Normalized Distribution
Spine	26%	33%
Brain	25%	31%
Lower and Upper extremities	20%	25%
Vascular	9%	11%

MAGNETIC RESONANCE IMAGING

Ranges for key parameters that could influence the results have been defined to allow full comparability.

	0							Deside Sales 11 Julio		Sequence					
HEAU	Slices					thickness		Be Be	esolution / n		Bandwid	th / Hz/P's	duration	Leitlinien BAE	K 2000.pdł
L	SIP	ВАК	Max 000	Min	ВАК	Max	Min	BAK	Max	Min	Max	Min 0000	BAK	Lable	Subtopic
IOCAlizer 12 tirre tra dark fluid 220	20	< 250	280%280	220+220	< 6	8	6	< A 1		0,6	83,3	290	/ 00.05.00	Taballa 2	Cohëdal
t2_tro_cog_512	20	200 250	250 x 200	220+220	5.6	5	5	2	0,8	0,7	195	212	< 00:05:00	Tabelle 2	Schader
en2d_diff_2coop_trace_p2	22	< 250	200 / 220	220/220	00	5	5	- 21 -	19	12	1205	250.0	< 00.05.00	Tabelle 2	540 A
epzu_um_oscan_trace_pz	20	200.250	220 - 220	220-220	БC	5	5	2	0.9	1,4	1600	200,0	< 00:05:00	Tabelle 2	MIDA
ti_se_tra_320	20	200250	230 x 230	220x220	5.6	5	5	2	0,3	0,4	163	25	< 00:05:00	Tabelle la	
ti_se_da_320	20	200.250	230 × 230	220*220	5.6	5	5	 Zi 	0,3	0.4	163	25	< 00:05:00	Tabelle 1a	
(1_5e_001_020	96	200200	200 / 200	2200220	00				0,0	0,4	100	20	Sequence	Tabelle la	
SPINE	Slices	Fr		m	Slice	thickness	/	B	esolution / n	nm	Bandwid	h / Hz/Py	duration	Leitlinien BAR	K 2000 pdf
	S/P	BÄK	Max	Min	BÄK	Max	Min	BÄK	Max	Min	Max	Min	BÄK	Table	Subtonic
localizer	5	0.111	450x450	240	0.111	8	8		1.8	0.6	290	83.3	Ding	1 9010	Captopio
t2 tse sag 512	16	≤ 350	300x300	260	≤ 4	4	3	≤1	0.8	0.5	244	41.67	< 00:05:00	Tabelle 2	BVS/LVS
t1 tse sag 512	15	≤ 350	300x300	260	≤ 4	4	3	< ≤1	0,8	0.5	250	62,5	< 00:05:00	Tabelle 2	BWS/LWS
t2 tse tra 512	20	≤ 350	230 x 230	150x150	≤ 4	4	4	≤1	0.7	0.4	195	250	< 00:05:00	Tabelle 2	BVS/LVS
t1 tse tra 448	20	≤ 350	230 x 230	150x150	≤ 4	5	4	≤1	0,7	0,4	228	25	< 00:05:00	Tabelle 2	BWS/LWS
													Sequence		
ABDOMEN	Slices	Fo	v/mm×m	m	Slice	thickness	/ mm	Be	esolution / n	nm	Bandwid	th / Hz/Px	duration	Leitlinien BAE	K 2000.pdf
	S/P	BÄK	Max	Min	BÄK	Max	Min	BÄK	Max	Min	Max	Min	BÄK	Table	Subtopic
localizer	5		500x500	380		8	6,0	1,7	2,0	0,989583	450	83,3			
t1_fl2d_opp-in_tra_p2_mbh	30	300400	380	330x350	≤6	8	6	≤2	1,5	1,1875	977	83,3	< 00:00:45	Tabelle 1b	
t2_trufi_cor_p2_bh	25	300400	420	350x300	≤6	10	5	≤2	1,4	1,0	651	125	< 00:05:00	Tabelle 1b	
t2_tse_tra_p2_mbh_320	30	300400	380	330x350	≤6	8	5	≤2	1,2	1,1	651	62,5	< 00:05:00	Tabelle 1b	
t1_vibe_fs_tra_p2_320_bh_pre	64	300400	400	330x350	≤6	4	3	≤2	1,25	1,1	488	166,7	< 00:00:45	Tabelle 1b	
t1_vibe_fs_tra_p2_320_bh_arterial	64	300400	400	330x350	≤6	4	3	≤2	1,25	1,1	488	166,7	< 00:00:45	Tabelle 1b	
t1_vibe_fs_tra_p2_320_bh_venous	64	300400	400	330x350	≤6	4	3	≤2	1,25	1,1	488	166,7	< 00:00:45	Tabelle 1b	
t1_vibe_fs_tra_p2_320_bh_delayed	64	300400	400	330x350	≤6	4	3	≤2	1,25	1,1	488	166,7	< 00:00:45	Tabelle 1b	
t1_vibe_fs_cor_p2_bh_288_post	128	300400	400 x 345	350x315	≤6	4	1,6	≤2	1,4	1,1	600	166,7	< 00:00:45	Tabelle 1b	
											Sequence				
KNEE	Slices	Fc	V/mm×m	m	Slice	thickness	/ mm	Be	esolution / r	nm	Bandwid	th / Hz/Px	duration	duration Leitlinien BAEK 2000.pdf	
	S/P	BAK	Max	Min	BAK	Max	Min	BAK	Max	Min	Max	Min	BAK	Table	Subtopic
localizer tra	3		500x500	280		8	5		2,0	0,7	250	83,3			
localizer_sag+cor+tra	3		350	2158231		8	5		1,4	0,7	250	83,3			
t1_se_sag_512	32	≤ 250	160 x 160	1608160	3,0	4	3	<u>≤ 0,5</u>	0,5	0,3	244	31,25	< 00:07:00	Tabelle 2	Kniegelenk
t2_tse_Fs_sag_320	30	≤ 250 < 050	160 x 160	160%160	3,0	4	3	≤ 0,5	0,5	0,5	244	41,67	< 00:07:00	Tabelle 2	Kniegelenk
pa_tse_is_cor_pz_biz	30	\$200	160 X 160	140	3,0	4	3	_ ≤0,5	0,5	0,3	195	41,67	< 00:07:00	Tabelle Z	Kniegelenk
4000	Clines	-			O						Deside the state		Sequence		14 0000 - 44
ANGIO	Silces			im Adia		e thickness		Be DÅK	esolution / n	nm Mär	Bandwid	n r HzrPx		Leitlinien BAE	K 2000.par
L Localizat, feat	- 371-	DAK	1×1ax	400 - 400	BAK		17116	BAK	1¥1ax 2.0	16	1¥188 660	244	DAK	Table	Subtopic
I Localizer legs	5		500×500	400 × 400		0,0 8.0	7		2,0	1,0	558	244			
II Localizer upper legs	1 2 1		500×500	400 × 400		8.0	ż		2.0	16	558	244			
IV Localizer abdomen	1 Ż		500x500	400 x 400		8.0	ż		2.0	1.6	558	244			
IV Angio3D abdomen pre	96	≤ 400	400 x 350	330x350		2,6	1,3	≤2	1.4	1,1	680	488	< 00:05:00	Tabelle 2	V. cava
III Angio3D upper legs pre	96	≤ 500	400 x 350	330x350		2,6	1,3	≤2	1,4	1,1	680	488	< 00:05:00	Tabelle 2	Extremitätengefäße
II_Angio3D_legs_pre	88	≤ 500	400 x 350	330x350		2,2	1,1	≤2	1,3	1,0	690	488	< 00:05:00	Tabelle 2	Extremitätengefäße
I_Angio3D_feet_pre	96	≤ 500	400 x 350	330x350		2	0,9	≤2	1,3	0,9	490	488	< 00:05:00	Tabelle 2	Extremitätengefäße
IV Care bolus	1		450 x 365	330x350		20,0			1,8		400				
IV_Angio3D_abdomen	96	≤ 400	400 x 350	330x350		2,6	1,3	≤2	1,4	1,1	680	488	< 00:01:00	Tabelle 2	V. cava
III Angio3D upper legs	96	≤ 500	400 x 350	330x350		2,6	1,3	≤2	1,4	1,1	680	488	< 00:01:00	Tabelle 2	Extremitätengefäße
II_Angio3D_legs	88	≤ 500	400 x 350	330x350		2,6	1,1	≤2	1,3	1,0	690	488	< 00:01:00	Tabelle 2	Extremitätengefäße
LAngio3D_feet	96	≤ 500	400 x 350	330x350		2	0,9	≤2	1,3	0,9	490	488	< 00:01:00	Tabelle 2	Extremitätengefäße

MAGNETIC RESONANCE

• Energy measurement test procedure

Test measu	urements	typical head measurement					
				Sequence			Energy /
	Starttime	Action	Endtime	duration	Power / kW	Time / h	kWh/sequence
	9:00:00	Recorded start time					
		stand-by: patient preparation and positioning	; patient data er	ntry			
		localizer		00:00:10	60,00	0,0028	0,17
		stand-by: start new sequence					
		t2_tirm_tra_dark-fluid_320		00:04:32	60,00	0,0756	4,53
		stand-by: start new sequence					
		t2_tse_sag_512		00:03:45	60,00	0,0625	3,75
		stand-by: start new sequence					
		ep2d_diff_3scan_trace_p2		00:01:39	60,00	0,0275	1,65
		stand-by: start new sequence					
		t1_se_tra_320		00:02:53	60,00	0,0481	2,88
		stand-by: contrast agent injection / start new	/ sequence				
		t1_se_tra_320		00:02:53	60,00	0,0481	2,88
		stand-by: start new sequence					
		t1_se_cor_320		00:02:25	60,00	0,0403	2,42
		stand-by: patient out and data archiving					
		Recorded end time	9:33:00				
	Start	Action	End	Total time			
	9:00:00	average head examination total	9:33:00	0:33:00	kW	Time	kWh
		sum scan time		0:18:17			18,28
		sum stand-by		0:14:43	15,00	0,25	3,68
		control calculation		0:33:00		Total	21,96

Once defined the test procedure for MRI will be prepared and made available to stakeholders.

Companies are now running test measurements on all the equipment models placed on the market in 2010/2011.

An external consultant is working with participating companies to define a realistic and ambitious reduction target.